The

Complete
Reference

Part Five of this book provides two sample C++ applications. The

purpose of this section is twofold. First, the examples help illustrate the
benefits of object-oriented programming. Second, they show how C++
can be applied to solve two very different types of programming

problems.

The
Complete

Reference

|nteati“g |
~ New Classes: -

o oustom Stl‘mg Class I8

935

936 C++: The Complete Reference

C++ provides a full-featured, powerful string class called basic_string. The

purpose of this chapter is not to develop an alternative to this class, but rather to
give you insight into how any new data type can be easily added and integrated into
the C++ environment. The creation of a string class is the quintessential example of this
process. In the past, many programmers honed their object-oriented skills developing
their own personal string classes. In this chapter, we will do the same.

While the example string class developed in this chapter is much simpler than the
one supplied by Standard C++, it does have one advantage: it gives you full control
over how strings are implemented and manipulated. You may find this useful in certain
situations. It is also just plain fun to play with!

This chapter designs and implements a small string class. As you know, Standard

___| The StrType Class
Our string class is loosely modeled on the one provided by the standard library. Of
course, it is not as large or as sophisticated. The string class defined here will meet the
following requirements:
W Strings may be assigned by using the assignment operator.
Both string objects and quoted strings may be assigned to string objects.
Concatenation of two string objects is accomplished with the + operator.
Substring deletion is performed using the — operator.

String comparisons are performed with the relational operators.

String objects may be initialized by using either a quoted string or another
string object.

Strings must be able to be of arbitrary and variable lengths. This implies that
storage for each string is dynamically allocated.

B A method of converting string objects to null-terminated strings will be provided.

Although our string class will, in general, be less powerful than the standard string
class, it does include one feature not defined by basic_string: substring deletion via
the — operator.

The class that will manage strings is called StrType. Its declaration is shown here:

class StrType ({
char *p;
int size;
public:
StrType () ;

Y

Chapter 39: Integrating New Classes: A Custom String Class

StrType (char *str);
StrType(const StrType &o); // copy constructor

~StrType() { delete [] p; }

friend ostream &operator<<{ostream &stream, StrType &o);
friend istream &operator>>(istream &stream, StrType &O);

StrType operator=(StrType &o); // assign a StrType object
StrType operator=(char *s); // assign a quoted string

StrType operator+(StrType &o); // concatenate a StrType object

StrType operator+{char *s); // concatenate a guoted string

friend StrType operator+(char *s, StrType &o): /* concatenate
a gquoted string with a StrType object */

StrType operator- (StrType &o); // subtract a substring
StrType operator-(char *s); // subtract a quoted substring

// relational operations between StrType objects

int operator==(StrType &o) { return !strcmp(p, o0.p); }

int operator!=(StrType &0) { return strcmp(p, 0.p); }

int operator<(StrType &o) { return strcmp(p, o.p) < 0; }
int operator>(StrType &o) { return strcmp(p, o.p) > 0; }
0; 1}
0; 3}

H

int operator<=(StrType &o) { return strcmp(p, 0.p) <
int operator>=(StrType &o) { return strcmp(p, 0.p) >

// operations between StrType objects and quoted strings
int operator=={(char *s) { return !strcmp(p, s}; }

int operator!={(char *s) { return strcmp(p, s); }

int operator<{(char *s) { return strcmp(p, s) < 0; }

int operator>(char *s) { return strcmp(p, s) > 0; }

int operator<=(char *s) { return strcmp(p, s) <= 0; }
int operator>=(char *s) { return strcmp(p, s} >= 0; }

int strsize() { return strlen(p); } // return size of string
void makestr (char *s) { strcpy(s, p); } // make guoted string

operator char *() { return p; } // conversion to char *

937

938

C++: The Complete Reference

The private part of StrType contains only two items: p and size. When a string
object is created, memory to hold the string is dynamically allocated by using new, and
a pointer to that memory is put in p. The string pointed to by p will be a normal, null-
terminated character array. Although it is not technically necessary, the size of the string
is held in size. Because the string pointed to by p is a null-terminated string, it would
be possible to compute the size of the string each time it is needed. However, as you
will see, this value is used so often by the StrType member functions that the repeated
calls to strlen() cannot be justified.

The next several sections detail how the StrType class works.

The Constructors and Destructors

A StrType object may be declared in three different ways: without any initialization,
with a quoted string as an initializer, or with a StrType object as an initializer. The
constructors that support these three operations are shown here:

// No explicit initialization.
StrType: :StrType () {
size = 1; // make room for null terminator
try {
p = new char([size];
} catch (bad_alloc xa) {
cout << "Allocation error\n";
exit(1l);
}
strepy(p, "");

// Initialize using a quoted string.
StrType: :StrType (char *str) {
size = strlen(str) + 1; // make room for null terminator
try {
p = new char[size];
} catch (bad_alloc xa) {
cout << "Allocation error\n";
exit (1) ;
}
strcpy(p, sty

// Initialize using a StrType object.
StrType: :StrType(const StrType &o) |

Chapter 39: Integrating New Classes: A Custom String Class 939

size = n.size;
try {
p = new charl[size];

} catch (bad_alloc xa) {
cout << "Allocation error\n";
exit (1) ;

}

strepy (p, 0.P);

When a StrType object is created with no initializer, it is assigned a null-string.
Although the string could have been left undefined, knowing that all StrType objects
contain a valid, null-terminated string simplifies several other member functions.

When a StrType object is initialized by a quoted string, first the size of the string is
determined. This value is stored in size. Then, sufficient memory is allocated by new
and the initializing string is copied into the memory pointed to by p.

When a StrType object is used to initialize another, the process is similar to using a
quoted string. The only difference is that the size of the string is known and does not
have to be computed. This version of the StrType constructor is also the class’ copy
constructor. This constructor will be invoked whenever one StrType object is used to
initialize another. This means that it is called when temporary objects are created and
when objects of type StrType are passed to functions. (See Chapter 14 for a discussion
of copy constructors.)

Given the three preceding constructors, the following declarations are allowed:

StrType x("my string"); // use quoted string
StrType y(x); // use another object
StrType z; // no explicit initialization

The StrType destructor simply frees the memory pointed to by p.

1'1/0 on Strings

Because it is common to input or output strings, the StrType class overloads the << and
>> operators, as shown here:

// Output a string.
ostream &cperator<<(ostream &stream, StrType &O!
{

stream << 0.pP;

940 C++: The Complete Reference

return stream;

// Input a string.
istream &operator>>(istream &stream, StrType &o)
{
char t£[255]; // arbitrary size - change if necessary

int len;

stream.getline(t, 255);
len = strlen(t) + 1;

if(len > o.size) {

delete [] o.p;

try {

o0.p = new char[len];

} catch (bad_alloc xa) {
cout << "Allocation error\n";
exit (1) ;

}

o.size = len;

}
strepy(o.p, t);
return stream;

As you can see, output is very simple. However, notice that the parameter o is passed
by reference. Since StrType objects may be quite large, passing one by reference is more
efficient than passing one by value. For this reason, all StrType parameters are passed
by reference. (Any function you create that takes StrType parameters should probably
do the same.)

Inputting a string proves to be a little more difficult than outputting one. First, the
string is read using the getline() function. The length of the largest string that can be
input is limited to 254 plus the null terminator. As the comments indicate, you can
change this if you like. Characters are read until a newline is encountered. Once the
string has been read, if the size of the new string exceeds that of the one currently held
by o, that memory is released and a larger amount is allocated. The new string is then
copied into it.

Chapter 39: Integrating New Classes: A Custom String Class 941

__| The Assignment Functions

You can assign a StrType object a string in two ways. First, you can assign another StrType
object to it. Second, you can assign it a quoted string. The two overloaded operator=()
functions that accomplish these operations are shown here:

// Assign a StrType object to a StrType object.
StrType StrType::operator=(StrType &0)
{

StrType temp(o.p);

if(o.size > size) {

delete [] p; // free old memory
try {
p = new charlo.size];

} catch (bad_alloc xa) {
cout << "Allocation error\n";
exit (1) ;

}

size = o.size;

strcpy (p, ©.pP);
strcepy(temp.p, 0.P);

return temp;

// Assign a quoted string to a StrType object.
strType StrType: :operator={(char *s)
{
int len = strlen(s) + 1;
if(size < len) {
delete [] p;
try {
p = new char(len];
} catch (bad_alloc xa) {
cout << "Allocation error\n";
exit(1l);

942 C++: The Compiete Reference

}

size = len;
}
strcpy(p, s);
return *this;

These two functions work by first checking to see if the memory currently pointed
to by p of the target StrType object is sufficiently large to hold what will be copied to it.
If not, the old memory is released and new memory is allocated. Then the string is copied
into the object and the result is returned. These functions allow the following types of
assignments:

StrType x("test"), y;

hY X; // StrType object to StrType object

X = "new string for x"; // quoted string to StrType object

Each assignment function returns the value assigned (that is, the right-hand value) so
that multiple assignments like this can be supported:

StrType X, v, zZ;

X =y = z = "test";

___| concatenation

Concatenation of two strings is accomplished by using the + operator. The StrType class
allows for the following three distinct concatenation situations:

B Concatenation of a StrType object with another StrType object

B Concatenation of a StrType object with a quoted string

B Concatenation of a quoted string with a StrType object

When used in these situations, the + operator produces as its outcome a StrType object that
is the concatenation of its two operands. It does not actually modify either operand.

Chapter 39: Integrating New Classes: A Custom String Class

The overloaded operator+() functions are shown here:

// Concatenate two StrType objects.
StrType StrType: :operator+(StrType &0)
{

int len;

StrType temp;

delete [] temp.p;

len = strlen(o.p) + strleni(p) + 1;
temp.size = len;
try {

temp.p = new char([len];

} catch (bad_alloc xa) {
cout << "Allocation error\n”;
exit(1l);

}

strecpy (temp.p, P}i

strcat (temp.p, ©.P);

return temp;

)

Strlype StrType: :operator+(char *s)
{

int len;

StrType temp;

delete [] temp.p;

len = strlen(s) + strlen(p) = 1;
temp.size = len;
try {
temp.p = new char[len];
} catch (bad_alloc xa) {
cout << "Allocation error\n";

// Concatenate a StrType object and a guoted string.

943

944

C++: The Complete Reference

exit{l);
}
strcpy{temp.p, p):

strcat(temp.p, s):

return temp;

// Concatenate a quoted string and a StrType object.
StrType operator+(char *s, StrType &o)
{

int len;

StrType temp;

delete [] temp.p;

len = strlen(s) + strlen(o.p) + 1;
temp.size = len;
try {
temp.p = new char{len];
} catch (bad_alloc xa) {
cout << "Allocation error\n";
exit(1l);
}
strcpy (temp.p, s);

strcat(temp.p, o.p;

return temp;

All three functions work basically in the same way. First, a temporary StrType
object called temp is created. This object will contain the outcome of the concatenation,
and it is the object returned by the functions. Next, the memory pointed to by temp.p is
freed. The reason for this is that when temp is created, only 1 byte of memory is allocated
(as a placeholder) because there is no explicit initialization. Next, enough memory is
allocated to hold the concatenation of the two strings. Finally, the two strings are copied
into the memory pointed to by temp.p, and temp is returned.

Chapter 39: Integrating New Classes: A Custom String Cliass

Substring Subtraction

A useful string function not found in basic_string is substring subtraction. As implemented
by the StrType class, substring subtraction removes all occurrences of a specified substring
from another string. Substring subtraction is accomplished by using the — operator.

The StrType class supports two cases of substring subtraction. One allows a StrType
object to be subtracted from another StrType object. The other allows a quoted string to be
removed from a StrType object. The two operator—() functions are shown here:

// Subtract a substring from a string using StrType objects.
StrType StrType::operator- (StrType &substr)
{

StrType temp(p);

char *sl;

int i, 3J;

for (i=0; *sl; i++) {
if(*sl!=*substr.p) { // if not first letter of substring
temp.p{i] = *sl; // then copy into temp
sl++;
}
else {
for(j=0; substr.pljl==sl[j] && substr.p(jl; j++)
if ('substr.pl[j]) { // is substring, so remove it
sl += 3;

i

i--;
}
else { // is not substring, continue copying

temp.pl[i] = *sl;
sl++;
}
}
}
temp.p(i] = '\0"';

return temp;

// Subtract quoted string from a StrType object.
StrType StrType::operator-(char *substr)

StrType temp (p);

946

C++: The Complete Reference

char *sl;
int 1, 3;
sl = p;

for(i=0; =*sl; i++) {
if(*sl!=*substr) { // if not first letter of substring
temp.pl[i] = *sl; // then copy into temp
sl++;
}
else {
for (j=0; substr[jl==sl(j] && substr[jl; j++) ;
if (tsubstr[-]) { // is substring, so remove it
sl += 3J;
i--;
}
else { // is not substring, continue copying

temp.pli] = *sl;
sl++;
}
}
}
temp.pl[i] = '\0"';

return temp;

These functions work by copying the contents of the left-hand operand into temp,
removing any occurrences of the substring specified by the right-hand operand during
the process. The resulting StrType object is returned. Understand that neither operand
is modified by the process.

The StrType class allows substring subtractions like these:

StrType x("I like C++"), y("like");
StrType z;

z =x - vy; // z will contain "I C++"
z = x - "C++"; // z will contain "I like "
// multiple occurrences are removed

z = "ABCDABCD";
x = z -"A"; // x contains "BCDBCD"

Chapter 39: Integrating New Classes: A Custom String Class 947

___| The Relational Operators

The StrType class supports the full range of relational operations to be applied to
strings. The overloaded relational operators are defined within the StrType class
declaration. They are repeated here for your convenience:

// relational operations between StrType objects

int operator==(StrType &o) { return !strcmp(p, ©o.p); }
int operator!=(StrType &o) { return strcmp(p, ©.p); }
int operator<(StrType &o) { return strcmp(p, 0.p) < 0; 1}
int operator>{(StrType &o) { return strcmp(p, o.p) > 0; }
int operator<=(StrType &o) { return strcmp(p, ©.p) <= 0; 1}
0; 3}

il

int operator>=(StrType &o) { return strcmp{p, ©.p) >

// operations between StrType objects and guoted strings
int operator==(char *s) { return !strcmp(p, s);: }

int operator!=(char *s) { return strcmp(p, s); }

int operator<(char *s) { return strcmp(p, s) < 0; }

int operator>{char *s) { return strcmp(p, s) > 0; 1}

int operator<=(char *s) { return stremp (p, s) <=

int operator>=(char *s) { return strcmp(p, s) »>=

The relational operations are very straightforward; you should have no trouble
understanding their implementation. However, keep in mind that the StrType class
implements comparisons between two StrType objects or comparisons that have a
StrType object as the left operand and a quoted string as the right operand. If you want
to be able to put the quoted string on the left and a StrType object on the right, you will
need to add additional relational functions.

Given the overloaded relational operator functions defined by StrType, the following
types of string comparisons are allowed:

StrType x("one"), v("two"), z("three");
if(x < y) cout << "x less than y";
if(z=="three") cout << "z equa.s three";
y = "o";

= "ne";
if(x==(y+z)) cout << "x equals v+z";

C++: The Complete Reference

Miscellaneous String Functions

The StrType class defines three functions that make StrType objects integrate more
completely with the C++ programming environment. They are strsize(), makestr(),
and the conversion function operator char *(). These functions are defined within the
StrType declaration and are shown here:

int strsize() { return strlen(p);) // return size of string
void makestr(char *s) { strepy(s, p); } // make quoted string
operator char *(){ return p; } // conversion to char *

The first two functions are easy to understand. As you can see, the strsize() function
returns the length of the string pointed to by p. Since the length of the string might be
different than the value stored in the size variable (because of an assignment of a shorter
string, for example), the length is computed by calling strlen(). The makestr() function
copies into a character array the string pointed to by p. This function is useful when
vou want to obtain a null-terminated string given a StrType object.

The conversion function eperator char *() returns p, which is, of course, a pointer
to the string contained within the object. This function allows a StrType object to be
used anywhere that a null-terminated string can be used. For example, this is valid code:

StrType x("Hello");
char s{207];

// copy a string obiect using the strcpy() function
strcpy(s, x); // automatic conversion to char *

Recall that a conversion function is automatically executed when an object is involved
in an expression for which the conversion is defined. In this case, because the prototype
for the strepy() function tells the compiler that its second argument is of type char *,
the conversion from StrType to char * is automatically performed, causing a pointer
to the string contained within x to be returned. This pointer is then used by strcpy() to
copy the string into s. Because of the conversion function, you can use an StrType
object in place of a null-terminated string as an argument to any function that takes an
argument of type char *.

Chapter 39: Integrating New Classes: A Custom String Class 949,

i The conversion to char * does circunvent encapsulation, because once a function has a

) pointer to the object’s string, it is possible for that function to modify the string directly,
bypassing the StrType member functions and without that object’s knowledge. For this
reason, you must use the conversion to char * with care. You can prevent the underlying
string from being modified by having the conversion to char * return a const pointer.

With this approach, encapsulation is preserved. You might want to try this change on
your own.

___|The Entire StrType Class

Here is a listing of the entire StrType class along with a short main() function that
demonstrates its features:

e

#include <ilostream>
#include <new>
#include <cstring>
#include <cstdlib>
using namespace std;

class StrType
char *p;
int size;
public:
StrType();
StrType {char *str);

7

StrType (const StrType &o); // copy constructor
~StrType() { delete [] p; 1}

friend ostream &operator<<{ostream &stream, StrType &0) ;
friend istream &operator>>(istream &stream, StrType &O);

StrType operator=(StrType &o): // assign a StrType object
StrType operator=(char *s); // assign a quoted string

StrType operator+(StrType &o); // concatenate a StrType object

StrType operator+(char *s); // concatenate a quoted string

friend StrType operator+(char *s, StrType &c); /¥ concatenate
a quoted string with a StrType object */

950 C++: The Complete Reference

StrType operator-(StrType &o); // subtract a substring
StrType operator-(char *s); // subtract a quoted substring

// relational operations between StrType objects
int operator==(StrType &o) { return !strcmp(p, o0.p); }
int operator!=(StrType &o) { return strcmp(p, o.p); }
int operator<(StrType &o) { return strcmp(p, o.p) < 0; }
int operator>(StrType &o) { return strcmp(p, o.p) > 0; }
int operator<=(StrType &o) { return strcmp(p, o.p)

<= 0; }
int operator>=(StrType &o) { return strcmp(p, o.p) >= 0; }

// operations between StrType obiects and quoted strings
int operator==(char *s) { return !strcmp(p, s); }
int operator!=(char *s) { return strcmp(p, s); }
int operator<(char *s) { return strcmp(p, s) < 0; }
0; 3}

int operator<=(char *s) { return strcmp(p, s) <= 0; }

int operator>(char *s) { return strcmp!(p, s) >

int operator>=(char *s) { return strcmp(p, s) >= 0; }

int strsize() { return strlen(p); } // return size of string
void makestr(char *s) { strcpy(s, p); } // null-terminated string
operator char *() { return p; } ,/ conversion to char *

Y

// No explicit initialization.
StrType::StrType() |
size = 1; // make room for null terminator
try {
p = new char([siza];
} catch (bad_alloc xa) {
cout << "Allc~ation error\n";
exit(l);
}
strcpy(p, "");

// Initialize using a quoted string.
StrType: :StrType(char *str) {
size = strlen(str) + 1; // make room for null terminator
try {
p = new char(size];
} catch (bad_alloc xa) {

Chapter 39: Integrating New Classes: A Custom String Class

cout << "Allocation error\n";
exit(1l);

}

strcpy(p, str);

// Initialize using a StrType cobject.
StrType: :StrType{const StrType &O) {

size = o.size;
try {
p = new char(sizel;

} catch (bad_alloc xa) {
cout << "Allocation error\n';
exit(1l);

}

strcpy(p, ©.p);

// Output a string.

ostream &operator<<(ostream &stream, StrType &O:
{

stream << 0.p;

return stream;

/

// Input a string.

istream &operator>>(istream &stream, StrType &O)

{

char t[255]; // arbitrary size - change if necessary
int len;

stream.getline(t, 255);
len = strlen{t) + 1;

if{len > o.size) {
delete [] o.p;
try {
o.p = new charllenl;

} catch (bad_alloc xa) |
cout << "Allocation error\a";

exit (1)

951

952 C++: The Compiete Reference

o.size = len;
}
strcpy(o.p, t);
return stream;

“

// Assign a StrType object to a StrType object.
StrType StrType::operator=(StrType &o)

{
StrType temp(o.p);

if(o.size > size! {

delete [] p; // free old memory

try {
p = new charf{o.size];

} catch (bad_alloc xa) {
cout << "Allocation error\n";
exit(1l);

}

size = o.size;

strcpy(p, o0.p);
strcpy (temp.p, o.p);

return temp;

// Assign a quoted string to a StrType object.
StrType StrType::operator=(char *g)
{
int len = strlen(s) + 1;
if(size < len) {
delete [] p:
try {
P = new char{len];
} catch (bad_alloc xa) {
cout << "Allocation error\n";
exit(1l);
}

size = len;

Chapter 39: [Integrating New Classes: A Custom String Class 953

strepy(p, s);
return *this;

// Concatenate two StrType objects.
StrType StrType::operator+ (StrType &o)
{

int len;

StrType temp;

delete [] temp.p;
len = strlen(o.p) + strlen(p) + 1;
temp.size = len;
try {
temp.p = new char{len];
} catch (bad_alloc xa) {
cout << "Allocation error\n";
exit{1l);
}
strcpy (temp.p, p);

strcat(temp.p, 0.p);

return temp;

// Concatenate a StrType object and a quoted string.
StrType StrTvpe::operator+{char *s)
{

int len;

StrType temp;

delete [] temp.p:
len = strlen(s) + strlen(p) + 1;
temp.size = len;

try {
temp.p = new char{len];

} catch (bad_alloc xa) {
cout << "Allocation error\n"';
exit(l);

954 C++: The Complete Reference

strcpy(temp.p, p);
strcat (temp.p, s);

return temp;

// Concatenate a cuoted string and a StrType object.
StrType operator+ ‘char *s, StrType &o)
{

int len;

StrType temp;

delete [] temp.p;

len = strlen(s) + strlen(o.p) + 1;
temp.size = len;
try {
temp.p = new char[len];
} catch (bad_alloc xa) {
cout << "Allocation error\n";
exit (1) ;
}
strcpy (temp.p, $);

strcat(temp.p, o0.p);
return temp;
// Subtract a substring from a string using StrType objects.

StrType StrType::operator- (StrType &substr)

{
StrType temp(p):

char *sl;
int 1, j;
sl = p;

for(i=0; *sl; i++) {
if(*slt=*substr.p) { // if not first letter of substring
temp.pli] = *sl; // then copy into temp
sl++;

4

Chapter 39: Integrating New Classes: A Custom String Class

}

else {
for(j=0; substr.pl[jl==s1[j] && substr.p(3]; 1++) ;
if(!substr.pl(j]) { // is substring, so remove it
sl += 3;
i--;
}
else { // is not substring, continue copying
terp.plil = *sl;
sl++;
}
}
}
temp.pl(ii = '\0';

return temp;

/

// Subtract quoted string from a StrType object.
StrType StrType::operator-{(char *substr)

{
StrType temp(p);
char *si;
int i, 3j;
sl = p;
for (i=0; *sl; i++) {
if(*sli=*substr) { // if not first letter of substring
temp.pli] = *sl; // then copy into temp
sl++;
}
else {

for(j=0; substr{jl==s1[1] && substr[j]; J++)

’

if('substr(j]) { // is substring, so remove it
sl += J;
i--; 7

}

else { // 1s not substring, continue copying
terp.pli] = *sl;
sl++;

955

956 C++: The Complete Reference

temp.pli] = "\0"';
return temp;

int main()
{
StrType sl ("A sample session using string objects.\n");
StrType s2(sl);
StrType s3;
char s[80];

cout << sl << s2;

s3 = sl;
cout << sl;

s3 .makestr(s) ;
cout << "Convert to a string: " << s;

g2 = "This is a new string."
cout << g2 << endl;

StrType s4(" So is this.");
sl = s2+s4;
cout << sl << endl;

f(s2==53) cout << "Strings are equal.\n";

f(s2!=s3) cout << "Strings are not equal.\n";
f(sl<s4) cout << "sl less than s4\n";

f(sl>sd) cout << "sl greater than s4\n";

f(sl<=s4) cout << "sl less than or equals s4\n";
f(sl>=s4) cout << "sl greater than or equals s4\n";

if(s2 > "ABC") cout << "s2 greater than ABC\n\n";

sl = "one two three one two three\n";
s2 = "two";
cout << "Initial string: " << sl;

cout << "String after subtracting two: ";
s3 = sl - s2;
cout << s3;

Chapter 39: Integrating New Classes: A Custom String Class 957

cout << endl;

s4 = "Hi there!";

s3 = s4 + " C++ strings are fun\n";
cout << s3;

s3 = s3 - "Hi there!";

s3 = "Aren't" + s3;

cout << g3;

sl = s3 - "are ";
cout << sl;
s3 = sl1;

cout << "Enter a string: ";
cin >> sl;
cout << sl << endl;

cout << "sl1 is " << sl.strsize() << " characters long.\n";
puts(sl); // convert to char *

sl = s2 = s3;
cout << sl << s2 << s3;

sl = s2 = 83 = "Bye ";
cout << sl << 82 << s3;

return 0;

The preceding program produces this output:

A sample session using string objects.

A sample session using string objects.

A sample session using string objects.

Convert to a string: A sample session using string objects.
This is a new string.

This is a new string. So is this.

Strings are not egual.

sl greater than s4

sl greater than or equals s4

s2 greater than ABC

C++: The Complete Reference

Initial string: one two three one two three
String after subtracting two: one three one three

Hi there! C++ strings are fun
Aren't C++ strings are fun
Aren't C++ strings fun

Enter a string: I like C++

sl is 10 characters long.

I like C++

Aren't C++ strings fun

Aren't C++ strings fun

Aren't C++ strings fun

Bye Bye Bye

This output assumes that the string "I like C++" was entered by the user when
prompted for input.

To have easy access to the StrType class, remove the main() function and put the
rest of the preceding listing into a file called STR.H. Then, just include this header file
with any program in which you want to use StrType.

Using the StrType Class

To conclude this chapter, two short examples are given that illustrate the StrType class.
As you will see, because of the operators defined for it and because of its conversion
function to char *, StrType is fully integrated into the C++ programming environment.
That is, it can be used like any other type defined by Standard C++.

The first example creates a simple thesaurus by using StrType objects. It first
creates a two-dimensional array of StrType objects. Within each pair of strings, the first
contains the key word, which may be looked up. The second string contains a list of
alternative or related words. The program prompts for a word, and if the word is in the
thesaurus, alternatives are displayed. This program is very simple, but notice how clean
and clear the string handling is because of the use of the StrType class and its operators.
(Remember, the header file STR.H contains the StrType class.)

#include "str.h"
#include <iostream>
using namespace std;

StrType thesaurus[]{2] = {
"book", "volume, tome",

Chapter 39: Integrating New Classes: A Custom String Class 959

"store", "merchant, shop, warehouse",
"pistol", "gun, handgun, firearm",
"run", "jog, trot, race",

"think", "muse, contemplate, reflect",
"compute", "analyze, work out, solve",

won 0o
’

Yi

int main()
{
StrType X;
cout << "Eater word: "“;

cin >> X;

int i;
for (i=0; thesaurus([i][0]!=""; 1i++)
if (thesaurus([i] [0]==x) cout << thesaurus[i](1l];

return 0;

The next example uses a StrType object to check if there is an executable version of
a program, given its filename. To use the program, specify the filename without an
extension on the command line. The program then repeatedly tries to find an executable
file by that name by adding an extension, trying to open that file, and reporting the
results. (If the file does not exist, it cannot be opened.) After each extension is tried, the
extension is subtracted from the filename and a new extension is added. Again, the
StrType class and its operators make the string manipulations clean and easy to follow.

#include "str.h"
#include <iostream>
#include <fstream>

using namespace std;

// executable file extensions
char ext[3]([4) = {

"COM",

"BAT"

980 C++: The Complete Reference

int main{int argc, char *argv([])
{

StrType fname;

int 1i;

if(argec!=2) {

cout << "Usgage: fname\n";
return 1;

fname = argv{l]:

fname = fname + "."; // add period
for(i=0; 1i<3; i++) {
fname = fname + ext([i]; // add extension
cout << "Trying " << fname << " ";

ifgstream f(fname);

if(f) {
cout << "- Exists\n";
f.close():
}
else cout << "- Not found\n";
fname = fname - ext[i]; // subtract extension
}
return 0;

For example, if this program is called ISEXEC, and assuming that TEST.EXE exists,
the command line ISEXEC TEST produces this output:

Trying TEST.EXE - Exists
Trying TEST.COM - Not found
Trying TEST.BAT - Not found

One thing to notice about the program is that an StrType object is used by the ifstream
constructor. This works because the conversion function char *() is automatically invoked.
As this situation illustrates, by the careful application of C++ features, you can achieve
significant integration between C++'s standard types and types that you create.

Chapter 39: Integrating New Classes: A Custom String Class

___| creating and Integrating New Types in General
As the StrType class has demonstrated, it is actually quite easy to create and integrate a
new data type into the C++ environment. To do so, just follow these steps.

1. Overload all appropriate operators, including the I/0 operators.
2. Define all appropriate conversion functions.
3. Provide constructors that allow objects to be easily created in a variety of

situations.

Part of the power of C++ is its extensibility. Don't be afraid to take advantage of it.

___| A challenge

Here is an interesting challenge that you might enjoy. Try im plementing StrType using
the STL. That is, use a container to store the characters that comprise a string. Use
iterators to operate on the strings, and use the algorithms to perform the various string
manipulations.

961

